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tice is given. 
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1. I N T R O D U C T I O N  

In this paper we study a class of spin-glass models consisting of Ising 
variables on a hierarchical diamond lattice with random next-neighbor 
interactions. By construction, the Migdal-Kadanoff  renormalization trans- 
formation is exact. 

Following Collet and Eckmann, (1) we view this problem as a problem 
of random .variables and we want to study the evolution of the probability 
distribution of the couplings under the action of the renormalization group. 
We are interested in limit distributions that remain unchanged under a 
change of lattice scale. Collet and Eckmann have demonstrated the 
existence of such a limit in a space of bounded symmetric functions. Besides 
low- and high-temperature limit distributions, they found a nontrivial fixed 
point corresponding to a spin-glass transition. It was in fact shown that 
this model has zero magnetization and nonzero Edwards-Anderson order 
parameter at low temperature. However, its Parisi (2) overlap function has 
been shown to be trivial. (3/ 

The purpose of this paper is to extend the analysis of Ref. ! to a larger 
class of models and to include nonsymmetric probability distributions of 
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coupling constants. We prove the existence of another fixed point 
corresponding to a transition to a mixed ferromagnetic (antiferro- 
magnetic) spin-glass phase. 

In Section 2 we describe the model and give a heuristic derivation of 
the phase diagram. The diagram was obtained in Ref. 3, but our results on 
the flow in the low-temperature phase are slightly different. In Section 3, a 
proof is given for the existence of the mixed fixed point. Some details of the 
proofs are left to the Appendix. 

2. T H E  P H A S E  D I A G R A M  

The model we want to study consists of Isinglike variables si localized 
on the sites i of a recursive lattice and interacting with nearest neighbors 
with a coupling constant e0, which is a random variable. The lattice is con- 
structed as follows (see Fig. 1). First we choose an integer n >~ 1. We start 
with two sites and a link connecting them. Call this graph L0. Then we 
substitute the link by n new sites and connect each one of the new sites 
with the extremes of the old link. We obtain L1. It has 2 + n sites and 2n 
links. We iterate, i.e., given LN, w e  obtain Lm+l by substituting for each 
link n new sites and 2n new links. 

Now consider the system at a given level N. Associated with it is the 
energy of a configuration of spins {s} and links {e}, 

HN({s}, Z <JsisJ 
(i ,j)  

where the sum is over nearest neighbors. 
We shall consider the eij as independent, identically distributed ran- 

dom variables, with probability distribution f(~). 
If we apply a renormalization group transformation by summing up 

O O 

L o 

Fig. 1. 

L~ L 2 

The construction of the lattice for n = 3. 
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the spins created at level N, we end up with the same system but at the 
level N -  1 and with new effective coupling constant i given by 

n 

g= ~ gi ( la)  
i - - 1  

g= tgh- l ( tgh  e tgh e') ( lb)  

The variables g are again independent and identically distributed with 
probability distribution j~ (see Fig. 2). We are looking for distributions that 
are invariant under the transformation induced by (1). 

Observe that the pure system is obtained by setting f ( e )=  6(e -  J), so 
in this case the fixed point distribution is 6 ( E -  J*), with J* given by 

J *  = r / t g h  -l(tgh2 J*) 

which has a nontrivial solution for n > I. 
We next describe heuristically the behavior of the random variables 

under renormalization. 
First observe that if n is very large, Eq. ( la)  suggests that, by the cen- 

tral limit theorem, every bounded distribution is mapped on a Gaussian. 
So we will look for a Gaussian fixed distribution and we will parametrize 
our functions by a mean J and a variance a. We will also consider the 
family of pure systems as the subspace a = 0. With this in mind let us now 
study the evolution of the parameters J and a under renormalization. We 
have 

J= n J= n f T(x, y) f ( x )  f ( y )  dx dy = J(J, a 2) (2a) 

~Z=n62=n f [T(x, y ) - Y ] 2 f ( x ) f ( y ) d x d y = d 2 ( J ,  a 2) (2b) 

S, 

")i s< i s 
n 

,, r ".~ ~ o o 

' ,-, "S' S S' S En 

Fig. 2. The decimation of the spins si between s and s'. 
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with 

T(x, y) = tgh ~(tgh x tgh y), 
1 - ( x  - J ) ~  

f(x) ~ (27z0.2)1/2 exp 20.2 

I f  0 -2 and J are small, we obtain 

j ~  r t ( j2 _ 2j20.2 if_ . . . ) ,  ~2 -- n(o-4 + 2j2o-2 q_ . . . )  

This gives us four fixed points: (0,0), the high-temperature one; 
(l/n,0), the pure ferromagnetic one; (0, 1/n), the pure spin-glass one; and 
(1/n, 1/n), a mixed fixed point. We use the word mixed here to indicate the 
disordered and ferromagnetic character of the interactions. A 
demonstration of the existence for the pure spin-glass fixed point as well as 
the high- (a ~ 0) and low-temperature (o- ~ oo) behavior for J =  0 is given 
in Ref. 1. We give in the next section a proof of the existence of the mixed 
fixed point. 

In the remainder of this section we investigate heuristically the 
behavior of the system in the low-temperature regions, that is, the flow of 
the points (J, o -2) under Eqs. (2) if one or both of the components is big. 

Consider first the case J >  1, o-2~ 1. Then we obtain, by expanding 
T(x, y) around Jo = tgh- l ( tg  h2 J), 

J ~ no',  6 2 - no- 2 

This shows that we have a zero-temperature pure ferromagnetic fixed point 
(o% 0), but it is unstable with respect to the disorder o-2. 

To analyze the other cases (o-2 >> 1), let us rewite Eq. (2a) as 

J = n  J 0 - ~  I ln (1- t2 tgh2x) t  (47zo-2)l/2exp-~-~a2dx 

where t = tgh 2J. Then we have 

~nJ[1 - O(a/J)] if o-/J~ 1 
J ~  (nJO(J/o-) if J/o ~ 1 

For the variance we always have for low temperature 

(~2 ~ no-2 

This means that if we start with a low-temperature system with almost all 
bounds ferromagnetic, but with a small broadening around J (J>> 1 >> o-), 
this system becomes more and more disordered (o- increases) under the 
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Fig. 3. The phase diagram. Phase boundaries are indicated qualitatively. 

action of the renormalization group, ending in a fixed point (0% oo), but 
remains essentially ferromagnetic. 

On the other hand, if we begin with a system that is more disordered 
than ferromagnetic ( J ~ a ) ,  then we will end up with a pure spin-glass 
system in a fixed point (0, ~ )  (Fig. 3). The case J = 0 ,  or>> 1 was analyzed 
in Ref. 1. 

3. T H E  M I X E D  F I X E D  P O I N T  

The idea is to show that the operator described above, which 
corresponds to the action of the renormalization group on the space of the 
probability distributions for the couplings, has a fixed point in a suitably 
chosen space. 

Since we expect the fixed distribution to be almost a Gaussian, it is 
reasonable to parametrize our space by a mean J, a squared variance a 2, 
and a function ~b. This function represents the non-Gaussian part of the 
probability distribution. Moreover, we expct the nontrivial fixed point to 
have a mean J and a squared variance a 2 of order 1/n, so we naturally 
define dimensionless parameters p and s, which corresponds to nJ and na 2, 
respectively. 

We start with a triplet (p, s, r which is, in a sense to be made precise, 
close to (I, 1,0). To this triplet is associated a function f,  which 

822/45/3-4-2 
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corresponds to the probability distribution of the interaction e at a given 
level of the hierarchy (the ai and the a; of Fig. 1). The function associated to 
(1, 1, 0) is a Gaussian with mean 1/n and squared variance 1In. Then we 
sum over the si spins. This corresponds to associating to the function f a 
new function ~ which stands for the probability distribution of the gi. This 
step introduces a highly nonlinear and non-Gaussian effect into the dis- 
tribution. We call 7 and ~ the mean and the variance of ~. The next step is 
to sum over the n independent, identically distributed variables g~ to obtain 
the new effective coupling g; this is achieved by taking the convolution 
product of f a total of n times to obtain f, the distribution of the ~. This 
clearly has mean J = n.7 and variance (~2 = n(~2. If n is sufficiently large, f is 
nearly Gaussian and is reparametrized as (/3, 4 ~), which should also be 
close to (1, 1, 0). 

3.1. Definitions and Notations 

Let us now introduce the main definitions 

H={(P,S, 4)[P, seR;OeLoo(R); I(P, s, O)k < o o ;  

f 4(x)dx=O, f x4(x)dx=O, x20(x)dx=O} 
where 

with 

I(p,  s, 4)1 = Ipl + Isl + 141 

141 ~--1141100 -t-IIx34112-~ - Nx44112 

[Ix*4llq=(f hx~O(x)[q) ~/q 

To each (p, s, 4 ) e l l  with s > 0  we associate a function f by 

f(x) -= (n/s) 1/z O(nl/2x) + hp/,,s/,(x ) 

where hj, az(y) denotes the Gaussian 

(27co_2) 1/2 exp - [(x - J)2/2a 2 ] 

(Although it is not necessary, we will also consider p ~> 0.) 
We define 

H1 --= {fl ]fl H, - n-1/2 ]]fH o~ + n5/4 Ilx3fll 2 + nV4 IIx4fll 2 < oo } 



Mixed Phase Transition for a Hierarchical Spin Glass 375 

The relation S~(p, s, ~b)=f  defines the operator S~: H-- .H~. Denote the 
action of the tangent map by 

DSllp.,,~l(r, t, ~b ) = g 

with components 

DSilp,s,~t(r, O, O) = gp 

DSl(p.s.ol(O, t, O) = gs 

DSI~p.~,~(O, O, ~b ) = g~ 

In general we shall write gi, where i stands for p, s, or ~b. 
Consider next for f ,  g c H 1 

fo + A ( f ' g ) ( x ) = ( 1 - t g h 2 x )  r y [ ( l _  y 2 ) [ l _ ( t g h 2 x ) / y 2 ]  

with ~ =  {y, Itgh xl < lYl < 1}. Note that A(f ,  g ) = A ( g , f ) .  
As we shall see, A maps(Hx xH~) to K defined as 

K-{T1171K < oo} 

with 

[ jTIK= I[jT[[ ~ + n 1/2(ln n)-I  i[jTIi 2 + nS/Z I[x3J~l[ ~ + n7/2 [[xajT[[ 1 

So we define the map S: H 1 ~ K by 

(S f ) (x )  = f ( x )  = A(f, f )  

The tangent map is given by 

D S f g  = ~ = 2 A ( f  g) 

Next define the operation T: K ~ HI by 

( f(x)= 7,~ 

which is the n-fold convolution product of~. We denote ~(x)=DTTg.  
The last operation T~ : H 1 --+ H is defined by 

r , f : ( p ,  ~, ~) 
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with 

= n f xf(x) dx 

~=n[f x~f(x)dx-(~/n)~ 1 
~(n ~/~x) = (S/n)'/~ I f ( x )  - h~/. ,~/ .(x) ] 

Observe that T1 = $1  ~. 
Let M = T 1 TSS~. What we want to show is that M has a fixed point 

near (1, 1, 0). This means that the "renormalization group operator" has a 
fixed distribution that is almost a Gaussian with mean 1In and variance 
1/n 1/:. We also want to show that these are the only relevant variables. This 
should imply that the tangent map DM is almost diagonal with respect to 
these variables. It turns out that two off-diagonal elements are big with the 
norm on H defined above. However, since the determinant of DM is almost 
equal to the product of the diagonal elements, we can make a scale change, 
which means we can consider an equivalent norm on H, 

+1 
I(P, s, ~b)ln = nl/411n n IPl Inn Is] + I~bl 

We state our main results with this equivalent norm, although in all the 
intermediate steps only the norm introduced before is needed. In fact we 
can consider the action of DM on each of the subspaces of the tangent 
space separately. 

T h e o r e m  1. Let 

B= { (p,s, ~)l l (p -  l, s -  l, ~ )[n <<. (lnn)3} 

The operator M maps B to H and has a unique fixed point in B. The map 
DM has two simple eigenvalues at 2 + O(n 1/2) and the remainder of the 
spectrum strictly inside the unit disk. 

To demonstrate Theorem 1 by the modified Newton's method we need 
the following. 

T h e o r e m  2: 

I. IM(1, O,O)-(1, O,O)ln<~(lnn)/n. 
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. 

"matrix" 

D M =  E 

H 

M is defined as a map from B to H and DM(p,s,~ ) is a 3 • 3 

whose elements satisfy 

A = 2 + O(n - 1/2), 

IB(O, t, o)1. 

It(o, 0, ~)1. 

rD(r, O, O)]n 

IF(0, 0, ~)ln 

]G(r, O, O)ln 

IH(O, t, O)IH 

leo, o, ~P)I. 

E =  2 + O(n -3/4) 

~< (1/n)l(O, t, O)l. 

~< (l/In n) I(O, O, ~)rn 

<<. (1In 1/4) I(r, O, 0)] H 

~< (1/ln n) [(0, 0, ~)1. 

~< [(ln z n)/n ~/4] I(r, 0, 0)in 

~< [(ln 2 n)/n '/2] I(O, t, O)fn 

~< [(ln n)/n 1/4] [(0, 0, ~)[n 

We will now describe all the steps, propositions, and lemmas that lead 
to Theorem 2. Part 1 will follow after little effort from Lemma 4. The 
elements A and E of the matrix D M  of part 2 are bounded in Corollary 7. 
Bounds on B, C, D, and F follow from Lemma 5 and those on G, H, and I 
immediately from Proposition 12.2. Most of the proofs are essentially the 
same as in the symmetric case, so we refer to the original paper. ~ 

3.2.  T h e  O p e r a t o r  S 1 

We have SI(p,  s, qS) = f and 

f ( x )  = hp/n,s/,(x) + (n/s) 1/2 ~b(n l/2x) 

From the definitions it is obvious that ] S l ( p , s , ~ ) l n ~ O ( 1 )  for 
(p, s, ~b) ~ B, so 

I[SIIIB ~ . ,  ~ 0(1)  

Observe that for (p, s, ~b) ~ B 

I(P, s, ~b)l = 1 + O(n -I/2) 
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We also have 

DSl(p.,.o~(r, t, ~9 )(x) = g(x)  = gp(X) + gs(X) + go(x) 

with 

SO 

It is easy to show that for (p, s, r e B 

hDS,~p..,.~(r, t, ~')lm ~< 0(1) I(r, t, ~')k. 

Further, notice that 

[IDS,,~,,,~,II H 4 H ,  < 0 ( l )  

gp(X) dx = O, 

g~(x) dx = O, 

x -  g , ( x )  d x  = -  
n 

3.3. The Operator S 

We have 

S f  = ,~= A( f ,  f )  

D S r g  = ~ = 2A( f ,  g) 
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I f f ~  $1B ~ H~, g E H~, we have from Lemmas A2 and A4 of the Appendix 

I]A(f, g)lll ~< IIg/l~ 

[[A(f, g)112 ~ O(1)(HgH ~ [[/1[ ~ + [Fg/[ 0o in [If I] ~) 

[]x3A(f, g)ll, < O(1)llxf3112 Hx3glr2 

]Ix4A(f, g)ll, < O(1)rIxf4112 IIxg411= 

Since we know that If l . ,  < o(1), we have from the definitions of l' In, and 
]IK and the estimates above 

IgS~(p, s, r < O(1) 

IDSS~,~.~,r t, ~)IK ~< O(1)l(r, t, ~J)l 

So 

IlSSljl.~ K <<. o(1) 

IIDSS~r ~ K < 0(1) 

Moreover, a good knowledge of the moments of j7 and ~ is also 
required. If (p,s,  r  and (r, t,~9)~H, then for f = S S l ( p , s ,  r and 
~= DSSI~,,,~(r, t, ~) we have the following lemmas. 

L o m m a  4. The mean and the variance of j7 are given by 

Y= xf(~) dx = p2/n~ + O(n~/~/n3) 
o o  

a 2 = (x - y)2 jT(x ) dx = s2/n 2 + O(nl/4/n3) 
cso 

Moreover, the third moment of j7 is bounded as 

I +~ ( x _ y ) 3 f ( x ) d x  <O(Un 4) 
- - o o  

k e m m a  5. The moments of gi ( i=  p, s, r satisfy 

f + ~ X~p(X) dx= rp/n2 + Irl O(1/n 5/2) 
- - o 0  
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f +~ xZ~,p(X) dx <~ Ir[ O(1/n 5/2) 
oo 

f+~  x2g~2(x) dx <~ t/n 2 + Itl O(n~/4/n 3) 
O:3 

f ~ ]  x2go(x) 

f + ~ x3~'p(x) 
o0 

f+~ x3L(x) 
--oo 

f ~  x3g~ ' x )  

dx <~ It~t O(1/n 2) 

dx ~ Irl O(l/n 4) 

dx ~ ItL O(1/n 4) 

dx ~ I~l 0(1/n3nl/2) 

The proof of these lemmas is relegated to Appendix A2. 
On the other hand, by making estimates similar to Lemma A4, it is 

easy to obtain better bounds for the fourth moment as well. 

Lemrna 6 

f + ::~ X 4 I? (X)I  dx  ~ 0(1/ / ' /4)  

f+ xalg, p(X)l <~ Irl dx O(1/n4n 1/2) 

f + ~  x4q~s(x)l dx <<. Itl O(1/n 4) 
--0:3 

f +~ x41~(x)l dx <~ I~1 O(nl/4/n 4 ) 
-0:3 

At this point we have all that we need to estimate the elements of the 
first two lines of the "matrix" DM(p,s,(,) of Theorem 2, that is, the variation 
of/~ and ~f as functions of p, s, and ~b. These estimates follow as corollaries 
of Lemma 5. 

C o r o l l a r y  7. The two first diagonal elements of DM(p,s,r A and E, 
are given by 

A = 2 + O( 1/nl/2); E = 2 + O(1/n 3/4) 
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Proof. Since 

A = 2n 2 x[DSSI~r,,,~(1, O, 0 ) ] (x )  dx = n 2 Xgp(X) dx 

(' + 3C, 

E =  2n 2 ~ xZ[DSSI,p,~,~,(O, 1, 0 ) ] (x )  dx 

- 2n 2 x[SI,,~.~,(1, 0, 0 ) (x ) ]  & 
o~ 

x j x[DXSl~,.,.~,(1, 0, 0 ) (x ) ]  dx 

= 2n 2 x2g~.(x) dx - 2nJA 
,3O 

The assertion is obvious from Lemma  5. 
The bounds on B, C, D, and F follow exactly in the same way from 

Lemma 5. 
We also need the following properties of )7: 

k e m m a  8. Let 

)7~SSaB,  fh=Sl(p ,s ,O)=hp/n ,s /n  

L ( x )  = (n/s)l/2 (~(n'/2x) 

We write )7 as )7 = ~, + if, where 

~, = A( fh ,  f~) = SS~(p, s, O) 

~ = 2A(fh,  f~) + A ( L ,  L ) 
Then we have 

(a) L>0 

(b) L ( x ) d x =  rlL,la = l, ll)7hH2~O(nl/21nn) 

(c) J[~lJl ~< 0(n-3/4) 

This ~s a trivial variat ion of Remark 6.8. (~) 

3.4. ] 'he O p e r a t o r  T~ T 

This opera tor  corresponds to taking the sum of the n intermediate 
spins, that is, we want to estimate the sum of the n independent,  identically 
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distributed variables g each one with f ~ S S 1 B c K  as probability dis- 
tribution. The operator T~ Tj 7 has three components:  

n2 f x~(x) dx = 1 + O(nV4/n) 

g = n 2 f x2~7(x) dx -~2 /n  = 1 + O(nl/4/n) 

~( x ) = ( g/n ) I/2[f *"(n -l /:x ) - h~/.,s/.(x ) ] 

We want to estimate Iq~l. For  this, we are going to make use of central 
limit theorems. These estimates are on the Fourier transforms. We shall 
also deal with centered functions. 

Let us denote 

v = F f  ~ its Fourier transform, and 

~ . ( t )  = [v(n~/2 t ) ]  ~ 

With this notation the object to study is 

f , , ( t ) -  exp( -g t2 /2 )  = F[(1/d) 1/2 ~(x + ~/nV2)] 

In order to estimate the elements of the third row of the matrix 
DMcp,.~,r , that is, the variations ~q~ of the rest function ~b, let us write 

g ~  = ~ , ( x  + p /n ' /~ ) ,  ~ ,  = r ~  ~ 

chi(t) = [v(nl/Zt)] "-1 ~oi(nl/2t) 

We shall bound the c3~ by observing that for i = p, s, ~b 

[ - / ' n ~  1/2 ~ 3 

and 

= ~ , (x ) Ia~h~/ . ,~ / . (x ) -~(n)~ /2~(n l /2x)]a i~  

- [a~h~/.,~/.(x)] a,/~ 



Mixed Phase Transi t ion for  a Hierarchical  Spin Glass 383 

But 

and  

~ i ] J :  n 2 f X~:~7(X ) dX, ~i ~ -  /7 2 f x2gT(x )d~  

- i  - 7 ,  
- -  x h~/.,~/,,(x) 

Then we can write 

[j. ] = g~ + T X h o , ~ ( x )  xg~ & 

So 

with 

n 2 

If we define 

~7(.X. ) =],/(~O)*n-- 1 , ~O(n~l/2x) 

~, , ( x )  = n - 3/2 g , 7 ( n - ' 1 2  x ) 
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we have 

n n 2~ 3/2 

1/'2 n n / x  2 1N 

We want to estimate the Fourier transform of the right-hand side of the 
above equation, 

e3~,(t) -- [exp( -gt2/2)] [coj(O) + coj'(O) nt2/2] 

Define 

1 
I x'2C~ dx, p, =-~ p4=-~ f x4[?~ dx 

where 

a2 = I x'y~ dx 

Note that 1/931 ~< O)l/n) and 1 ~ ,o4~  O(l) (Lemmas 5 and 6). The fact that 
IP31 is only O(1/n) and not O(1) is very important and makes it possible to 
obtain the same bounds as in the case of symmetric distributions. It is in 
fact probably true that the moments/zp of fixed distributions for diamond 
lattices should satisfy the property that #2p 1 is of the same order as #2p. (41 

At this point it is convenient to introduce some more notations in 
order to state the results in a more compact form. We call lepl = I r l ,  

le,I --- It[, and I%1 =nl/4[~l. 
With this we have for i = p, s, ~b 

; (1) x3gi <~ O - ~  [eil 

Inl/2~o~(0)1 ~ O(n 3/2)le,l 

[nco;'(O)l ~< 0 (~) [e i [  

---+ In3/20);"(0)1 ~ 0 ~-~ leil 

--' ln2 sup c~ <<" O ( ~ )  

The same bounds remain true for the gi-~~ 
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L e m m a  9. For sufficiently large n one has uniformly in n and in 
rt[ < (n/,ip4) ~/2 the following inequalities: 

(a) 10{~ ~ , , ( t ) - e x p -  ~<O l + t l ~  ~ 

~{ fcb~,(t)_ (exp gt2'[- . . . .  ,n ,, nt2 (b) 

~t 2 
0(n-3/2)(1 + t 14) leil exp -- 2---0 

for j = 0 ,  1, 2, 3, 4 and i = p , s , ~ .  

Proof. The proof follows exactly that of the case of symmetric 
functions. Observe that the bounds in Lemmas 5 and 6 are exactly the 
same if we take centered functions ,7 ~ and ~o, because the translation is 
only O(1/n 2) . A sketch of the proof of Lemma 9 in the nonsymmetric case 
is given in Appendix A2. 

For the exterior region we have the following. 

L e m m a  10 ( L e m m a  6.9 o f  [1 ] ) .  For Ill >/(rl//p4~) 1/2, 

IFjT~ = Iv(nlnt)l ~<exp(--n 2/3) 

The conditions for the application of the lemma are assured by Lemma 8. 
As an immediate consequence of Lemmas 9 and 10 we have the 

following result. 

P r o p o s i t i o n  11. For n sufficiently large 

(a) Given .Te SS~ B c K, define 

f(x) =7*"(x) 
then one has 

n~n](n lnx  )= 1 1 " ( x  

with /~ = n2Y, g=n2c? 2, and 1$t <~O(1/n). 

(b) If ~ieDSSI~p,, ,~HcK, then for 

1 gi(x) = -  ( 7 0 ) *  n - I  * g 0 t F / - 1 / 2 X )  
n 

we have 

j ~i(x) - n  v2 Oxho.s(x)- in2 02ho,~(x)] <~ 0(/7-3/2) leil 

This completes the steps of the proof of Theorem 2. 
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A P P E N D I X  

Throughout the appendix all the integrals are between - o o  and + oo 
unless explicitly written otherwise. 

A1. Some Technical  Lemmas 

We restate here some technical lemmas. Most  of them were proven in 
Ref. 1. 

Lemma A1. Let 

T ( x , y ) = t g h  ~ ( t g h x t g h y )  

6(x, y ) = l l n [ l + z t g h ( x +  y)], O~<r~<l 

Then for all (x, y ) e  R 

(a) 

(b) 

(c) 

Ixl lyl 
IT(x, y)l ~ 5 

(1 + Ixl) '/2 (1 + lYl) 1/2 

IT(x, y)l ~ Ixyl 1/2 

.< 1 Iln(1 - I r tgh(x + y)] )1 Ic~( x, Y)I --~ 2 

~<[T(tgh lr, ( x + y ) ) l  

I_emma A2. Define 

( d), 
A(f, g)(x) (1 tgh 2 x) 

Ja [y[ (1 - y2)t-1 - (tgh 2 x)/y 2] 

x f ( t g h  - ~ y ) f ( t g h  , tghx)y  

with ~ = { y, Itgh xl < lYl < 1 }. Assume f ,  g �9 L~ m Loo and Ilflkl = 1. Then 

IlA(f, g)]ll ~< ]lglll 

IIA(f, g)l[2~<O(1) ~Hg[II Ilfll~ + []gU~ in Ilf[l~ if 11f112>~2 
[(llgll,llgl[oo)l/2+[Igll~llfll~2+llglloo if Ilfll~ ~<2 

This lemma was proven in Ref. 1 for f and g even. It can be easily 
extended to the general case if we consider separately the even and the odd 
parts of the functions involved. 
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Lemma A3. 

Lemma A4. 
finite, then 

A 2 .  

with 
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For  every c~ > 0 one has the inequalities 

][~HI ~ 2~ Ilqt][ ~ + ~-7/2 [1x4r 2 

Ilbll i ~< 2c~ I]~bll o~ + ~-s/2 i]x3@ll 2 

IIx~]l, ~ cd II~l! ~ + ~ 3/2 iix3~bll 2 

If for some k>~ 1, IlxZ~flr~ and IS-*gH2 exist and are 

IIx-'kgll ~ = j  IT(x, y)l 2k I f ( x )  g(Y)l dxdy 

0 ( 2 5  k) IIx-'[fll 2 Hx2~gll~ 

Proof." 

1 (1 + IxJ)* ff(x)t dx ( ] + ] ~ ) k  Ig(y){ dy 

~< 25~ Jrx~-XfPIxllx2kgll2 (1 + {xl)2k 

Bounds on the  M o m e n t s  

Consider  

f ( x )  = h~/,,,.~/,,(x) + (n/s)'/2 ~5(n ~/2x) 

We first estimate the Gaussian, i.e., the 4' = 0 contr ibut ion to J. Fo r  this we 
take the Taylor  expansion of T(x, y) around  (p/n, p/n) with the remainder  
at fourth order.  This gives 

Yo = Y0- - - ; - - -  + 4 t g h  2 2 O(x+y) 
�9 n 

- 3 tgh4[2P+O(x+Y)]  

x {4 tghZ[O(x - y ) ]  } 4(x3y + y3x) ho,,(x) ho,~,(y) dx dy 
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where 

Jo = tgh J tgh2(p/n), z = tgh 2J  

and 0 ~< O(z) ~< 1 for all z. Note  that  Itgh x[ ~< Ix] and each Ixl or l Yl con- 
tributes with O(n ~/2) to the integral. Thus, the integral is bounded  in 
modulus by O(n 3). 

To bound the non-Gauss ian  contr ibut ion observe that  

If we write 

we have 

But 

~(x -- p/n) = (n/s),/2 (b(n'/2 x) 

J,o = 2 If 6(x, y) ho,s(x) q~(y) dx dy 

+ f l  Ea(x, y )+  fix,  y)] (~(x)~ty)d~dy  

~J IT(x, y)L I~(x)/ I~(y)l dxdy  

O(1) ILx~ll~ = O(1/n)IIx~[I ~ ~ O(l/n)I~l 2 

For  the 6(x, y) part  we write 

6(x, y) : r + y) + r(x, y)(x + y)2 

with [r(x, Y)I ~< O(1/n). Since the first-order term does not  contr ibute  to the 
integral, we have 

f f  6(x, y) ~(y)[ho,,,(x) + 6(x ) ]  dx dy 

o(1/ .)  If Ix + ,,)2 t~(y)l [l&x)l + ho,.~(x)] d~ dy 

= O(1/n2)[[lx2011, ll~ll, + [Ixq~/l~ + II~l/~ Ilxq~ll 1 []x24~1[ ~] 
<~ O(1/n2)(lOI + I~bl 2) 
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But I~l <<-(n~/4/n) for (0, O, ~b)e B, so 

.7= ( p/n )2 + O(nl/4/n3) 

Let us now look at the first moment of ~=DSSl(p.s.~(r, t, 0). From the 
estimates above .it is obvious that 

f x~(x)  dx = f f  r(x, y ) f ( x )  g~(v) dx dy 

<~ 0(nl/4/n2) 101 

Consider 

r I ( )1 

The Gaussian part gives us 

-- z ) ' + R ( x , y ) ( x + y )  3 yho,.~(x) ho,~,(y)dxdy 
S 

with 

Thus 

rR(x, y)j<~Xxl+fyJ+(]xl+ryi) 3, r~2p/n 

I ~ ( ' )  

The last term on the right-hand side is bounded by 

( ' )  [r]ff x+ p-- rylld(x)lho,s(y)dxdy<.lr]O ~ I~b] n 

Finally, consider 

}tl 

822,'45 3-4-3 
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The Gaussian contribution to it is Ith O(1/n 3) and the rest is given by 

+ ho,,~(x ) ?(y)+ $(x) ?(y)] dx dy 

This was already bounded in Yno by O(nU4/n3). 
We now study the second moments. The squared variance after 

summing over one spin is given by 

~2---- I (x-.7)2 7(x) dx= fl  [ T(x, y ) -  ~l]2 f(x)  f ( y )  dx dy 

We write [T(x , y ) -Y]  as [ T(x, y ) -  }o] -  A, where laI=tYo-YI< 
0(l/n2). It is easy to show in the same way as for Y that the Gaussian con- 
tribution to the squared variance is given by 

O 2 = S2/rl 2 -Jr- O( 1In 3) 

The non-Gaussian part is 

I%cl = [r(x, y)+6(x, y)+~]~  

x [2ho,(X) 6(y) + 6(x) $(y)] dx dy 

O(nl/4/nS)+ ;~ [T(x, y)+a(x, y)]2 

x [2ho,,(x ) + q~(x)] 6(Y) dx ay 

<~o(1) ff (Ixyl +~lxl +~(yl) 2 

• [2ho,~(x) + I$(x)l ] 16(y)l dx dy + O(n'/4/n s) 
<~ O(1/n 2) [~b[ ~< O(nl/4/n 3) 

On the other hand, 

f x2~,p(x) dx 
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is easily bounded by rr I O(l/rt  2+ 1/2). We also have 

Consider now 
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The non-Gaussian part is bounded as for ~a by ftl O(rt~/4/~/?). It is easy to 
see that the leading term of the Gaussian part is tin 2 and the rest is 
O(l/n3)ltl. 

Finally, let us study the third moment of f :  

=f f  IT(x, y ) -Y]3  f ( x ) f ( y ) d x  dy ~3 

f; T3(x, y ) f (x )  f ( y )  dx d y -  j3 _ 3Y~' 

where the constant term is O(1/n4). We have 

~3,c = fj" [Yo+a(x+y)+bl(x2+y2)+b2xy 

+ c(x, y)(x + y)3]3 ho,~(x) ho.,(y) dx dy 

where ~70 = O(1/n2),a= O(1/n),bl = O(1/n2), b2 = O(1), and 

[c(x, 391 ~ [xl + lY[ + (Ixl + ly[) 3 

So the leading term is given by the integral ofYob~x2y 2 and is also O(1/n4). 
For the q~b part of/~3 w e  have, by Lemma A4, 

"jJ dy s T3(x' yl~(n' /2xl~(n' /2y) ax 

<. o U~ rfx3Or2 <~ o 
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To evaluate the mixed h~b contr ibut ion observe that  

2 I f  T3(x' y) hp/,,.,/.(x) d(y + pn) dx dy 

2 I f  IT(x, y) + 6(x, y) + Jo]  3 ho,,(x ) q~(y) dx dy 

X ho,s(X ) ~(y) dx dy ~- O(1/F/1/4) 
<~ 0(1/n3nl/4) Iq~[ 

In the same way 

; (X--ff)3gp(X) dX ~ - f  Z3(x, Y) Ihp/n,s/n(x)-~-~) (x-~P)I 

A3. Proof  of  I_emma 9a for j = 0  

Let us write Z=/71/2t. We can write v(r) as 

v(z) = 1 2 n . . . .  i -~p 3 +tmr(t) p4 

with Ir(t)l ~< O(1). 
If we denote  

then 

c~(t) = ~  p 3 t - 2 -  p4/2r(t) 

t2~ [1 + ~ ( 0 ]  v(~) = 1 - ~  
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If Itl ~ (gl/r04S) 1/2 and using the bounds on/9 3 and/94, we have that 

Ic4t)l < ~ +  O(1/n) 

For n sufficiently large and using 

fo d, l n ( 1 - x ) =  - x -  t 1 - t  

we obtain 

t2 X i 
In v ( r ) -  

2 n  6 p3 

3/9 2 
t 3 + t4l)4q(t) 

with Iq(t)l < 3" So we have 

f , , ( t ) = [ v ( z ) ] " = e x p  - - -  exp g P 3 ~  + t4p4q(t) 

Using the inequality l e ' -  1] ~ Ix[ e I~i, we obtain 

~,,(t) e x p - ~  <~0(1) (l+t4)exp-'t~22 
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